R
RAYTHEON23
Гостин
rtificial life (commonly called a-life) is the term applied collectively to attempts being made to develop mathematical models and computer simulations of the ways in which living organisms develop, grow, and evolve. Researchers in this burgeoning field hope to gain deeper insights into the nature of organic life as well as into the further possibilities of COMPUTER science and robotics (see ROBOT). A-life techniques are also being used to explore the origins and chemical processes of metabolism. Some investigators have even proposed that some digital life in computers might already be considered a real life form. Background The term artificial life was coined in the 1980s by Christopher Langdon, a computer scientist at Los Alamos National Laboratory and the Santa Fe Institute. Langdon organized the first experimental workshop on the subject at Santa Fe in 1987. Since then other a-life conferences have taken place, drawing increasingly wider attention and a growing number of participants. Theoretical studies of a-life, however, had been in progress long before the 1980s. Most notably, the Hungarian-born U.S. mathematician John VON NEUMANN, one of the pioneers of computer science, had begun to explore the nature of very basic a-life formats called cellular automata (see AUTOMATA, THEORY OF) in the 1950s. Cellular automata are imaginary mathematical cells --analogous to checkerboard squares--that can be made to simulate physical processes by subjecting them to certain simple rules called algorithms (see ALGORITHM). Before his death, von Neumann had developed a set of algorithms by which a cellular automaton--a box shape with a very long tail--could reproduce itself. Another important predecessor of a-life research was Dutch biologist Aristid Lindenmeyer. Interested in the mathematics of plant growth, Lindenmeyer found in the 1960s that through the use of a few basic algorithms--now called Lindenmeyer systems, or L-systems--he could model biochemical processes as well as tracing the development of complex biological forms such as flowers. Computer-graphics programs now make use of L-systems to yield realistic three-dimensional images of plants. The significance of Lindenmeyer's contribution is evident in the fact that so-called genetic algorithms are now basic to research into a-life as well as many other areas of interest. Genetic algorithms, first described by computer scientist John Holland of the University of Michigan in the 1970s, are comparable to L-systems. A computer worker trying to answer some question about a-life sets up a system--an algorithm--by which the computer itself rapidly grades the multiple possible answers that it has produced to the question. The most successful of the solutions are then used to develop new software that yields further solutions, and the cycle is repeated through several generations of answers. Evolutionary Modeling Langdon himself picked up on the work of von Neumann by attempting to design an a-life form on a computer screen. In 1979 he finally succeeded in developing loop-shaped objects that actually reproduced themselves, over and over again. As new generations spread outward from the initial organisms they left dead generations inside the expanding parameter. Langdon noted that the behavior of these a-life forms genuinely mimicked real-life processes of mutation and evolution. He eventually proposed that a-life studies could provide keys to understanding the logical form of any living systems, known or unknown. One of the most striking a-life simulations of evolutionary processes has been the work of Thomas Ray of the University of Delaware, who in 1990 set in motion a world of computer programs that he called Tierra. The world started out with a single ancestor, a program containing 80 instructions. A-life evolution proceeded as mutations rapidly appeared. The new forms included parasites that interacted with the original host forms, producing further mutations of hosts and parasites that learned to deal with one another anew in each succeeding generation. Bibliography Bibliography: Braitenberg, Valentino, Vehicles: Experiments in Synthetic Psychology (1984); Langdon, Christopher, ed., Artificial Life (1988); Levy, Steven, Artificial Life (1992);
eve go na srpski
Ртифициал живота (обично назива-живот) је појам применити на колективно покушаја да се на развоју математичких модела и компјутерских симулација од начина на који живе организме развијати, расти и развијати. Истраживачи у овом подручју бургеонинг наде за добијање дубљег увида у природу органског живота, као и на могућности даљег информатика и роботика (види РОБОТ). А-лифе технике Такође се користи за истраживање поријекла и хемијских процеса у метаболизма. Неки су чак истраззитељима предложено да неки дигитални живот на рачунарима могу да се већ сматрати реалном животу облику. Позадина Израз је сковао умјетни живот у 1980с бы Цхристопхер Лангдон, А информатицар у Лос Аламос Натионал Лабораторы и Санта Фе Институте. Лангдон организована прва експериментална радионица на тему у Санта Фе 1987. Од тада други лифе конференције су се догодили, цртање пажњу шире све више и све већи број учесника. Тхеоретицал студиес оф а-живот, међутим, били су у току дуге пре 1980. Нарочито, угарско-рођен амерички математичар Јохн вон Неуманн, један од пионира рачунарства, су почели да истражују природу основне а-лифе формата названа Станична аутомати (види аутомат, теорија) у 1950. Станична аутомати су имагинарни математички ћелије - аналогна табла за играње дама квадрата - то може бити да симулира физичке процесе субјецтинг их до одређених једноставних правила називају алгоритми (види алгоритам). Пре његове смрти, вон Неуманн је развио низ алгоритама по којој је Станична аутомат - кутија облика са врло дугим репом - репродуковати могла сама. Још једна важна претходника из живота истраживање је холандски биолог Аристид Линденмеыер. Заинтересовани у математици биљног раста, Линденмеыер наћи у 1960-их да кроз коришћење неколико основних алгоритама - сада зове Линденмеыер система, или Л-системи - модел могао биокемијских процеса, као и трагање за развој сложених биолошких облика као што је цвеће. Компјутерска графика-програме користити Л-система на реални принос тродимензионална слика биљака. Значај Линденмеыер допринос је видљиво у чињеници да је такозвани генетички алгоритми су сада основних истраживања у живота, као и многим другим областима од интереса. Генетички алгоритми, први описао информатицар Џон Холланд Универзитета у Мичигену у 1970с, су упоредити са Л-системи. Рачунар радник покушава да одговори на неколико питања о живота поставља систем - алгоритам - по којој је и сама рачунара убрзано разреда је више могућих одговора, да је она произведена на питање. Најуспешнија од решења су онда користе за развој нових софтвера који доноси даља решења, и циклус се понавља кроз неколико генерација одговоре. Еволутионары Моделинг Лангдон сам покупили на рад вон Неуманн бы покушаја десигн-а животна форма на рачунару екран. Године 1979 је коначно успео у развоју петља у облику предмета који заправо репродукују себе, више и више поново. Као нове генерације ширити према ван из првобитног организми су напустили мртвих генерација унутар шири параметра. Лангдон напоменути да је понашање тих образаца живота а-искрено мимицкед стварним процесе Мутације и еволуција. Он је предложио да би на крају живота студија могла дати кључеве за разумевање логично било који облик живих система, познат или непознат. Један од Најупадљивији а-лифе симулације процеса еволуционарна је рад Раы оф Тхомас Университы оф Делауаре, која је у 1990 је покренуло свет рачунарских програма који је назвао Тиерра. У свету се почело са једним предник, програм садржи 80 упутства. А-еволуција наставила живот као Мутације нагло појавио. Нови облици паразита који су интерацтед домаћин са изворним облицима, производећи даље Мутације над војскама и паразита који сазнаје да се једни са другима изнова у свакој узастопни нараштај. Библиографија Библиографија: Браитенберг, Валентино, Возила: Експерименти у синтетска Псыцхологы (1984); Лангдон, Цхристопхер, ед., Умјетне Лифе (1988); Левы, Стевен, умјетне Лифе (1992);:helou:
eve go na srpski
Ртифициал живота (обично назива-живот) је појам применити на колективно покушаја да се на развоју математичких модела и компјутерских симулација од начина на који живе организме развијати, расти и развијати. Истраживачи у овом подручју бургеонинг наде за добијање дубљег увида у природу органског живота, као и на могућности даљег информатика и роботика (види РОБОТ). А-лифе технике Такође се користи за истраживање поријекла и хемијских процеса у метаболизма. Неки су чак истраззитељима предложено да неки дигитални живот на рачунарима могу да се већ сматрати реалном животу облику. Позадина Израз је сковао умјетни живот у 1980с бы Цхристопхер Лангдон, А информатицар у Лос Аламос Натионал Лабораторы и Санта Фе Институте. Лангдон организована прва експериментална радионица на тему у Санта Фе 1987. Од тада други лифе конференције су се догодили, цртање пажњу шире све више и све већи број учесника. Тхеоретицал студиес оф а-живот, међутим, били су у току дуге пре 1980. Нарочито, угарско-рођен амерички математичар Јохн вон Неуманн, један од пионира рачунарства, су почели да истражују природу основне а-лифе формата названа Станична аутомати (види аутомат, теорија) у 1950. Станична аутомати су имагинарни математички ћелије - аналогна табла за играње дама квадрата - то може бити да симулира физичке процесе субјецтинг их до одређених једноставних правила називају алгоритми (види алгоритам). Пре његове смрти, вон Неуманн је развио низ алгоритама по којој је Станична аутомат - кутија облика са врло дугим репом - репродуковати могла сама. Још једна важна претходника из живота истраживање је холандски биолог Аристид Линденмеыер. Заинтересовани у математици биљног раста, Линденмеыер наћи у 1960-их да кроз коришћење неколико основних алгоритама - сада зове Линденмеыер система, или Л-системи - модел могао биокемијских процеса, као и трагање за развој сложених биолошких облика као што је цвеће. Компјутерска графика-програме користити Л-система на реални принос тродимензионална слика биљака. Значај Линденмеыер допринос је видљиво у чињеници да је такозвани генетички алгоритми су сада основних истраживања у живота, као и многим другим областима од интереса. Генетички алгоритми, први описао информатицар Џон Холланд Универзитета у Мичигену у 1970с, су упоредити са Л-системи. Рачунар радник покушава да одговори на неколико питања о живота поставља систем - алгоритам - по којој је и сама рачунара убрзано разреда је више могућих одговора, да је она произведена на питање. Најуспешнија од решења су онда користе за развој нових софтвера који доноси даља решења, и циклус се понавља кроз неколико генерација одговоре. Еволутионары Моделинг Лангдон сам покупили на рад вон Неуманн бы покушаја десигн-а животна форма на рачунару екран. Године 1979 је коначно успео у развоју петља у облику предмета који заправо репродукују себе, више и више поново. Као нове генерације ширити према ван из првобитног организми су напустили мртвих генерација унутар шири параметра. Лангдон напоменути да је понашање тих образаца живота а-искрено мимицкед стварним процесе Мутације и еволуција. Он је предложио да би на крају живота студија могла дати кључеве за разумевање логично било који облик живих система, познат или непознат. Један од Најупадљивији а-лифе симулације процеса еволуционарна је рад Раы оф Тхомас Университы оф Делауаре, која је у 1990 је покренуло свет рачунарских програма који је назвао Тиерра. У свету се почело са једним предник, програм садржи 80 упутства. А-еволуција наставила живот као Мутације нагло појавио. Нови облици паразита који су интерацтед домаћин са изворним облицима, производећи даље Мутације над војскама и паразита који сазнаје да се једни са другима изнова у свакој узастопни нараштај. Библиографија Библиографија: Браитенберг, Валентино, Возила: Експерименти у синтетска Псыцхологы (1984); Лангдон, Цхристопхер, ед., Умјетне Лифе (1988); Левы, Стевен, умјетне Лифе (1992);:helou: