- Член од
- 17 март 2005
- Мислења
- 11.493
- Поени од реакции
- 1.592
Mislam Hristo porano prasha koi se kompozitnite materijali za noviot B787. Eve go objasnuvanjeto podole. Avionot e tolku lesen, shto upotrebeniot metal (opashkata) zema polovina od vkupnata tezhina na avionot.
NEWEST BOEING JET RISES FROM SPOOLS OF THREAD
FREDERICKSON, Pierce County —Inside the "creel room" at Toray Composites America, hundreds of spindles squeak as they turn, steadily unwinding bobbins of black fiber.
The long, flat threads of carbon converge and feed into a machine that squeezes epoxy resin deep into the fibers.
"Our raw materials are string and glue," said Earl Benton, Toray's director of sales and marketing.
Just across the road, the alchemy is completed. Boeing turns these threads into the tailfin of the 787, the world's first largely plastic airliner.
The 787 is a bet-the-company wager for Boeing, one that now hangs upon building it right, getting it to fly this summer and delivering its promised efficiency.
Building the Dreamliner
The Dreamliner's potential already has propelled Boeing back into the top spot in commercial aerospace. Airlines have ordered or committed to buy 475 planes. Competitor Airbus lags by a full five years in developing its rival A350.
To maintain that lead, Boeing is relying on a complex new global manufacturing plan. Except for the Frederickson-built tailfin, all major chunks of the plane will be built by outside partners and then flown to Everett to be snapped together.
At the same time, as if to impress the world with the ambition, prowess and nerve of its engineers, Boeing is making an innovative shift from metal to plastic that will change forever the way airplanes are built.
Now it's time to start putting the pieces together.
Wednesday, the tailfin is scheduled to be rolled out and trucked north to the jet's final assembly site in Everett.
That's where Boeing plans to unveil the first completed 787 Dreamliner in July. The selected date: 7-8-07.
A vision in plastic
When you look at a Dreamliner sitting on a runway, almost everything you'll see will be carbon composite plastic.
"Say plastic, and people think of Mattel," said Phil Lathrop, a composite-plastics expert at Boeing Frederickson. But this is not the mass-production material that is melted and then molded into plastic toys, cafeteria chairs or computer casings. "We're not just stamping out fuselage sections," he said.
Instead, the airframe structural pieces must be built up, using layer after layer of carbon-fiber tape — Toray's end product — and then cured to hardness in a high-pressure oven.
The result is a structure that's light and strong, won't corrode and isn't subject to metal fatigue. And the plastic pieces can be built in huge sections, requiring far less final assembly work in Everett.
The edges of some structures on the 787, including the tailfin, are metal. And metal is used under the skin at some points to give structural strength. That metal makes up half the weight of the airplane.
But almost the entire outer skin of the 787, and much that lies beneath it, is made from the Toray raw material. "This is what I consider an all-plastic airplane," Lathrop said.
The plastic airframe of the 787 starts out as "string and glue," as an executive of supplier Toray Composites America puts it.
The string: Carbon fiber is derived from an oil-based polymer. Toray produces the fiber at its plant in Decatur, Ala., where the polymer filaments are spun into thicker flat threads, then treated at high temperature to increase tensile strength and stiffness.
The glue: The glue is made from epoxy resin mixed with chemical hardeners. The epoxy molecules are long polymer strands, like spaghetti, with linkage areas along the strands. The hardener allows those linkages to lock together when heated, turning a viscous liquid to a plastic solid.
Boeing's global partners, from Italy to Japan, all rely on Toray's Frederickson plant to produce their carbon-fiber tape.
Entering the plant, a visitor dons a lab coat, hard hat and safety glasses, slips hospital-style blue plastic booties over shoes and walks through an "air shower" to blow off dust particles.
"We're very concerned about contamination," said production superintendent John Ward, leading the way to the creel room.
A creel, like something out of a 19th century textile mill, is an array of parallel bars holding bobbins of tightly wound fiber. Each of the six creels at Toray has as many as 500 bobbins, and each bobbin holds up to 19,000 feet of fiber.
As the fibers unspool, they line up to form a wide sheet of parallel threads that feeds into a resin-infusing machine.
Sometimes the filaments separate, creating a small imperfection that must be removed. Before the sheet of fibers enters the machine, a worker reaches over and plucks off something to intercept such a defect.
"He's removing a fuzz ball," Benton said.
Meanwhile, in a much messier room, another ingredient is readied.
Amid empty containers coated with gloppy drips, epoxy resin and chemical hardeners are mixed in what resembles a giant cake mixer.
The beige-colored result, with the consistency of batter, is poured into metal molds the size of kitchen baking pans and frozen to suspend the hardening process.
Later, the solid slab is melted and dripped into a machine that applies a thin and precisely calibrated film of resin onto sheets of paper.
The carbon fiber is then squeezed between two sheets of this coated paper inside a resin infusion machine. Heat and pressure impregnate the carbon fiber with resin and hardener. Out the other end comes a wide black sheet, 3-foot or 5-foot wide depending on the machine, with backing paper retained on one side.
NEWEST BOEING JET RISES FROM SPOOLS OF THREAD
FREDERICKSON, Pierce County —Inside the "creel room" at Toray Composites America, hundreds of spindles squeak as they turn, steadily unwinding bobbins of black fiber.
The long, flat threads of carbon converge and feed into a machine that squeezes epoxy resin deep into the fibers.
"Our raw materials are string and glue," said Earl Benton, Toray's director of sales and marketing.
Just across the road, the alchemy is completed. Boeing turns these threads into the tailfin of the 787, the world's first largely plastic airliner.
The 787 is a bet-the-company wager for Boeing, one that now hangs upon building it right, getting it to fly this summer and delivering its promised efficiency.
Building the Dreamliner
The Dreamliner's potential already has propelled Boeing back into the top spot in commercial aerospace. Airlines have ordered or committed to buy 475 planes. Competitor Airbus lags by a full five years in developing its rival A350.
To maintain that lead, Boeing is relying on a complex new global manufacturing plan. Except for the Frederickson-built tailfin, all major chunks of the plane will be built by outside partners and then flown to Everett to be snapped together.
At the same time, as if to impress the world with the ambition, prowess and nerve of its engineers, Boeing is making an innovative shift from metal to plastic that will change forever the way airplanes are built.
Now it's time to start putting the pieces together.
Wednesday, the tailfin is scheduled to be rolled out and trucked north to the jet's final assembly site in Everett.
That's where Boeing plans to unveil the first completed 787 Dreamliner in July. The selected date: 7-8-07.
A vision in plastic
When you look at a Dreamliner sitting on a runway, almost everything you'll see will be carbon composite plastic.
"Say plastic, and people think of Mattel," said Phil Lathrop, a composite-plastics expert at Boeing Frederickson. But this is not the mass-production material that is melted and then molded into plastic toys, cafeteria chairs or computer casings. "We're not just stamping out fuselage sections," he said.
Instead, the airframe structural pieces must be built up, using layer after layer of carbon-fiber tape — Toray's end product — and then cured to hardness in a high-pressure oven.
The result is a structure that's light and strong, won't corrode and isn't subject to metal fatigue. And the plastic pieces can be built in huge sections, requiring far less final assembly work in Everett.
The edges of some structures on the 787, including the tailfin, are metal. And metal is used under the skin at some points to give structural strength. That metal makes up half the weight of the airplane.
But almost the entire outer skin of the 787, and much that lies beneath it, is made from the Toray raw material. "This is what I consider an all-plastic airplane," Lathrop said.

The plastic airframe of the 787 starts out as "string and glue," as an executive of supplier Toray Composites America puts it.
The string: Carbon fiber is derived from an oil-based polymer. Toray produces the fiber at its plant in Decatur, Ala., where the polymer filaments are spun into thicker flat threads, then treated at high temperature to increase tensile strength and stiffness.
The glue: The glue is made from epoxy resin mixed with chemical hardeners. The epoxy molecules are long polymer strands, like spaghetti, with linkage areas along the strands. The hardener allows those linkages to lock together when heated, turning a viscous liquid to a plastic solid.
Boeing's global partners, from Italy to Japan, all rely on Toray's Frederickson plant to produce their carbon-fiber tape.
Entering the plant, a visitor dons a lab coat, hard hat and safety glasses, slips hospital-style blue plastic booties over shoes and walks through an "air shower" to blow off dust particles.
"We're very concerned about contamination," said production superintendent John Ward, leading the way to the creel room.
A creel, like something out of a 19th century textile mill, is an array of parallel bars holding bobbins of tightly wound fiber. Each of the six creels at Toray has as many as 500 bobbins, and each bobbin holds up to 19,000 feet of fiber.
As the fibers unspool, they line up to form a wide sheet of parallel threads that feeds into a resin-infusing machine.
Sometimes the filaments separate, creating a small imperfection that must be removed. Before the sheet of fibers enters the machine, a worker reaches over and plucks off something to intercept such a defect.
"He's removing a fuzz ball," Benton said.
Meanwhile, in a much messier room, another ingredient is readied.
Amid empty containers coated with gloppy drips, epoxy resin and chemical hardeners are mixed in what resembles a giant cake mixer.
The beige-colored result, with the consistency of batter, is poured into metal molds the size of kitchen baking pans and frozen to suspend the hardening process.
Later, the solid slab is melted and dripped into a machine that applies a thin and precisely calibrated film of resin onto sheets of paper.
The carbon fiber is then squeezed between two sheets of this coated paper inside a resin infusion machine. Heat and pressure impregnate the carbon fiber with resin and hardener. Out the other end comes a wide black sheet, 3-foot or 5-foot wide depending on the machine, with backing paper retained on one side.