Еве линк за нормалниот процес на производство на вакцини
EDITOR'S NOTE (25 JANUARY 2022): Many anti-vaccine people and organizations are not presenting the information in this article in full context. The article below covers vaccines before the current COVID-19 pandemic. We will be updating…
www.historyofvaccines.org
Знам дека ретко кој ќе отвори да чита, затоа ќе ги потенцирам главните аспекти
Vaccine development is a long, complex process, often lasting 10-15 years and involving a combination of public and private involvement.
The United States Public Service Act of 1944 mandated that the federal government issue licenses for biological products, including vaccines. After a poliovirus vaccine accident in 1954 (known as the Cutter incident), the Division of Biologics Standards was formed to oversee vaccine safety and regulation. Later, the DBS was renamed the Bureau of Biologics, and it became part of the Food and Drug Administration. It is now know as the Center for Biologics Evaluation and Research.
Stages of Vaccine Development and Testing
Exploratory Stage
This stage involves basic laboratory research and often lasts 2-4 years. Federally funded academic and governmental scientists identify natural or synthetic antigens that might help prevent or treat a disease. These antigens could include virus-like particles, weakened viruses or bacteria, weakened bacterial toxins, or other substances derived from pathogens.
Pre-Clinical Stage
Pre-clinical studies use tissue-culture or cell-culture systems and animal testing to assess the safety of the candidate vaccine and its immunogenicity, or ability to provoke an immune response. Animal subjects may include mice and monkeys. These studies give researchers an idea of the cellular responses they might expect in humans. They may also suggest a safe starting dose for the next phase of research as well as a safe method of administering the vaccine.
Researchers may adapt the candidate vaccine during the pre-clinical state to try to make it more effective. They may also do challenge studies with the animals, meaning that they vaccinate the animals and then try to infect them with the target pathogen.
Ова е многу битно да се знае
Many candidate vaccines never progress beyond this stage because they fail to produce the desired immune response. The pre-clinical stages often lasts 1-2 years and usually involves researchers in private industry.
Значи многу битен фактор е колку добар имун одговор ќе даде вакцината, затоа и се пумпа 100% па 94% за на крај да биде боље ишта него ништа во оваа ситуација. Нормално нема шанси да биде одобрена вакцина со ваква мала заштита како оваа што е сега.
Скоро 0 заштита од заразување. Имунизација 0 и утеха демек послаби симптоми што е исто нон-сенс. Иначе веќе почнува да се спомнува приватниот спонзор.
IND Application
A sponsor, usually a private company, submits an application for an Investigational New Drug (IND) to the U.S. Food and Drug Administration. The sponsor describes the manufacturing and testing processes, summarizes the laboratory reports, and describes the proposed study. An institutional review board, representing an institution where the clinical trial will be conducted, must approve the clinical protocol. The FDA has 30 days to approve the application.
Once the IND application has been approved, the vaccine is subject to three phases of testing.
Досега сето ова е развој на вакцината од почеток до некое одобрување на апликацијата како заштитен патент за производителот кој тек треба да ја развие вакцината до крај и севкупно обично трае околу 6 години, не месеци.
Next Steps: Clinical Studies with Human Subjects
Phase I Vaccine Trials
This first attempt to assess the candidate vaccine in humans involves a small group of adults, usually between 20-80 subjects. If the vaccine is intended for children, researchers will first test adults, and then gradually step down the age of the test subjects until they reach their target. Phase I trials may be non-blinded (also known as open-label in that the researchers and perhaps subjects know whether a vaccine or placebo is used).
The goals of Phase 1 testing are to assess the safety of the candidate vaccine and to determine the type and extent of immune response that the vaccine provokes. In a small minority of Phase 1 vaccine trials, researchers may use the challenge model, attempting to infect participants with the pathogen after the experimental group has been vaccinated. The participants in these studies are carefully monitored and conditions are carefully controlled. In some cases, an attenuated, or modified, version of the pathogen is used for the challenge.
A promising Phase 1 trial will progress to the next stage.
Phase II Vaccine Trials
A larger group of several hundred individuals participates in Phase II testing. Some of the individuals may belong to groups at risk of acquiring the disease. These trials are randomized and well controlled, and include a placebo group.
The goals of Phase II testing are to study the candidate vaccine’s safety, immunogenicity, proposed doses, schedule of immunizations, and method of delivery.
Phase III Vaccine Trials
Successful Phase II candidate vaccines move on to larger trials, involving thousands to tens of thousands of people. These Phase III tests are randomized and double blind and involve the experimental vaccine being tested against a placebo (the placebo may be a saline solution, a vaccine for another disease, or some other substance).
One Phase III goal is to assess vaccine safety in a large group of people.
Certain rare side effects might not surface in the smaller groups of subjects tested in earlier phases. For example, suppose that an adverse event related to a candidate vaccine might occur in 1 of every 10,000 people. To detect a significant difference for a low-frequency event, the trial would have to include 60,000 subjects, half of them in the control, or no vaccine, group (Plotkin SA et al.
Vaccines, 5th ed. Philadelphia: Saunders, 2008).
Vaccine efficacy is tested as well. These factors might include 1) Does the candidate vaccine prevent disease? 2) Does it prevent infection with the pathogen? 3) Does it lead to production of antibodies or other types of immune responses related to the pathogen?
Јас не знам како вие го сфаќате поимот prevent disease или prevent infection with the pathogen, но за мене тоа значи заштита од заразување и никако другчие.
Next Steps: Approval and Licensure
After a successful Phase III trial, the vaccine developer will submit a Biologics License Application to the FDA. Then the FDA will inspect the factory where the vaccine will be made and approve the labeling of the vaccine.
After licensure, the FDA will continue to monitor the production of the vaccine, including inspecting facilities and reviewing the manufacturer’s tests of lots of vaccines for potency, safety and purity. The FDA has the right to conduct its own testing of manufacturers’ vaccines.
Post-Licensure Monitoring of Vaccines
A variety of systems monitor vaccines after they have been approved. They include Phase IV trials, the Vaccine Adverse Event Reporting System, and the Vaccine Safety Datalink.
Phase IV Trials
Phase IV trial are optional studies that drug companies may conduct after a vaccine is released. The manufacturer may continue to test the vaccine for safety, efficacy, and other potential uses.
VAERS
The CDC and FDA established
The Vaccine Adverse Event Reporting System in 1990. The goal of VAERS, according to the CDC, is “to detect possible signals of adverse events associated with vaccines.” (A signal in this case is evidence of a possible adverse event that emerges in the data collected.) About 30,000 events are reported each year to VAERS. Between 10% and 15% of these reports describe serious medical events that result in hospitalization, life-threatening illness, disability, or death.
VAERS is a voluntary reporting system. Anyone, such as a parent, a health care provider, or friend of the patient, who suspects an association between a vaccination and an adverse event may report that event and information about it to VAERS. The CDC then investigates the event and tries to find out whether the adverse event was in fact caused by the vaccination.
VAERS has successfully identified several rare adverse events related to vaccination. Among them are
- An intestinal problem after the first vaccine for rotavirus was introduced in 1999
- Neurologic and gastrointestinal diseases related to yellow fever vaccine
Additionally, according to Plotkin et al., VAERS identified a need for further investigation of MMR association with a blood clotting disorder, encephalopathy after MMR, and syncope after immunization (Plotkin SA et al.
Vaccines, 5th ed. Philadelphia: Saunders, 2008).
In Conclusion
Vaccines are developed, tested, and regulated in a very similar manner to other drugs. In general, vaccines are even more thoroughly tested than non-vaccine drugs because the number of human subjects in vaccine clinical trials is usually greater. In addition, post-licensure monitoring of vaccines is closely examined by the Centers for Disease Control and the FDA.
Ваљда ќе сфатите дека вакцината не е заебанција и треба долго и упорно испитување.
Не е уопште исто со земање парацетамол и аспирин ко што тука се поистоветува.