додавање на нов јазол на бинарното стебло со навој

Член од
16 јуни 2022
Мислења
11
Поени од реакции
0
Има неколку веб-локации и видеа кои покриваат вметнување во навојно бинарно SEARCH дрво, но јас сум само заинтересиран за целосно бинарно стебло. Како резултат на тоа, вметнувањето се врши со споредување на податочната вредност на новиот јазол со вредностите на податоците на постоечките јазли. Сепак, моето прашање е дали можам да додадам нов јазол на индексот што го посакувам. или барем да се стави нов јазол на „последната позиција“ на дрвото (десно до најдесниот лист јазол)?

Измислената глава е вообичаен метод за генерирање бинарни стебла со навој, според овој напис. Ова го олеснува изградбата на дрвја со еден јазол и го поедноставува конструкторот. Дали е тоа точно?

Секоја помош е многу ценета.
 
Член од
1 јануари 2010
Мислења
1.928
Поени од реакции
1.464
link: https://chat.openai.com
Janevski: Explain threaded binary tree in c++ and show an example.

Chat GPT:
A threaded binary tree is a binary tree data structure where each node in the tree has an additional reference to either its in-order predecessor or its in-order successor, depending on whether the node has a left child or a right child. This reference is called a thread, hence the name "threaded binary tree".

The purpose of threading is to make tree traversal more efficient. In a regular binary tree, traversal involves following pointers from node to node until reaching the desired node. In a threaded binary tree, traversal can be done using the threads, which can bypass the pointers and go directly to the desired node's in-order predecessor or successor.

Here's an example implementation of a threaded binary tree in C++, along with an example of how to traverse the tree using the threads:
Код:
#include <iostream>

class ThreadedBinaryTree {
private:
    struct Node {
        int data;
        Node *left;
        Node *right;
        bool has_left_thread;
        bool has_right_thread;
        Node(int val) : data(val), left(nullptr), right(nullptr), has_left_thread(false), has_right_thread(false) {}
    };
    Node *root;
public:
    ThreadedBinaryTree() : root(nullptr) {}
    void insert(int val) {
        Node *new_node = new Node(val);
        if (root == nullptr) {
            root = new_node;
            root->left = root->right = root;
            root->has_left_thread = true;
            root->has_right_thread = true;
        } else {
            Node *current = root;
            while (true) {
                if (val < current->data) {
                    if (current->has_left_thread) {
                        new_node->left = current->left;
                        current->left = new_node;
                        current->has_left_thread = false;
                        new_node->right = current;
                        new_node->has_right_thread = true;
                        break;
                    } else {
                        current = current->left;
                    }
                } else {
                    if (current->has_right_thread) {
                        new_node->right = current->right;
                        current->right = new_node;
                        current->has_right_thread = false;
                        new_node->left = current;
                        new_node->has_left_thread = true;
                        break;
                    } else {
                        current = current->right;
                    }
                }
            }
        }
    }
    void inorder_traversal() {
        Node *current = root;
        while (current->has_left_thread == false) {
            current = current->left;
        }
        while (current != root) {
            std::cout << current->data << " ";
            if (current->has_right_thread) {
                current = current->right;
            } else {
                current = current->right;
                while (current->has_left_thread == false) {
                    current = current->left;
                }
            }
        }
        std::cout << root->data << std::endl;
    }
};

int main() {
    ThreadedBinaryTree t;
    t.insert(4);
    t.insert(2);
    t.insert(6);
    t.insert(1);
    t.insert(3);
    t.insert(5);
    t.insert(7);
    t.inorder_traversal(); // Output: 1 2 3 4 5 6 7
    return 0;
}
In this implementation, each node has a boolean flag for whether it has a left thread or a right thread. If a node has a left thread, its left pointer points to its in-order predecessor; if it has a right thread, its right pointer points to its in-order successor. The insert function adds a new node to the tree

Janevski: continue

Chat GPT:
by finding the correct location and adjusting the threads accordingly.

The inorder_traversal function starts at the leftmost node (which has a left thread pointing to its in-order predecessor, which is the previous node in in-order traversal) and traverses the tree using the threads, outputting each node's data as it is visited. If a node has a right thread, the function follows it to the next node in in-order traversal; otherwise, it follows the node's right child to the leftmost node in its right subtree (which is the node's in-order successor).

In the example usage code, we create a threaded binary tree, insert seven nodes, and then traverse the tree in-order using the inorder_traversal function, printing the values of the nodes as we visit them. The output shows that the traversal is done in sorted order.

Note that in this implementation, we assume that the nodes contain integer data, and that the tree doesn't contain any duplicates. The implementation can be easily modified to handle different data types and handle duplicates, if needed.

Janevski: continue

Chat GPT:
Also, note that the insert function uses a loop to traverse the tree and find the correct position for the new node. The loop terminates when it finds a leaf node (i.e., a node with a thread pointing to its parent) where the new node should be inserted. If the new node's value is less than the leaf node's value, it becomes the leaf node's left child, and its left thread points to the leaf node. If the new node's value is greater than the leaf node's value, it becomes the leaf node's right child, and its right thread points to the leaf node's right thread (which is the next node in in-order traversal).

Overall, threaded binary trees can be a useful data structure in certain cases, such as when efficient in-order traversal is required. However, they can also be more complex to implement and maintain compared to regular binary trees, especially when adding or deleting nodes.
 
Член од
13 јули 2006
Мислења
15.335
Поени од реакции
18.207
Се разбира кодот треба да се провери, затоа што пред три дена, прв пат го пробав Open ChatGPT мислам дека е тоа верзија 3.5 и имаше халуцинација т.е. ми измисли php функција која не постои.

Бинг чат (верзија 4) не ја повтори грешката и ме упати на php библиотеки.
 

Kajgana Shop

На врв Bottom